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l 2. PRESSURE

This section covers static pressure, slow and rapid (explosive) decom-
pression, and blast overpressure. The partial pressure environment is
covered in Oxygen-COz-Energy , (No. I0) and Inert Gas (No. ll).

Static Pressure

The lower limits of static pressure are determined primarily by the
availability of an adequate PO 2 in the lungs for unimpaired performance

(Figure 12-I) and decompression sickness (see below}.

The physiological relations between the percentage of oxygen in the atmos-

phere of an aerospace vehicle and the total pressure of that atmosphere

shown in Figure 12-I are based on continuous exposure for one week or more.
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Figure 12-1

The Effect of Barometric Pressure and Altitude
on Oxygen Required for Normal Functions

(Adapted from the Space Handbook (1 15))

Atmospheric air contains 21°/0 oxygen by volume. At sea level, this leads

to a blood saturation of 95%. To maintain the same degree of oxygen in the

blood at lower pressure, the percentage of oxygen in the atmosphere must

increase as shown by the "sea level equivalent" curve. The clear unimpaired

performance zone, bounded by the hatched lines, indicates the range of varia-

tion that can be tolerated without performance decrement (see Oxygen-CO 2-
Enmrgy (No. I0).

Prolonged exposure to low oxygen levels lying to the left of the clear

unimpaired performance zone requires acclimatization. Acclimatization is

accomplished by continuous exposure to successively lower pressures with
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no intermediate return to higher pressures. Acclimatization to Z5, 000 feet
requires 4-6 weeks and performance is still impaired.

The upper limits of pressure are determined by nitrogen narcosis and
oxygen toxicity as indicated by the hatched lines in Figure 12-1. The maxi-
mum oxygen tolerance (definite pathology} for long periods is currently under
investigation. The role of nitrogen and trace contaminants on the symptoms
and signs of oxygen toxicity in the 90-i00% oxygen range is still open to
question, as shown in the hatched area extendin:_ in_.o the zone of unimpaired
performance (100). (See Inert Gas, No. 11). '% PO2 of 258 mm Hg (5 psia-

100% oxygen) has been tolerated in operational .qpa_:e cabins for up to 14 days

without performance decrement, though abnori_al hematological findings

were present which may have been related to the elevated partial pressure of

oxygen (92, 100). Table 11-8 covers ground-based experiments in atmos-

pheres of different pressures and compositions.

Charts and nomograms are available relaling different total pressures

and partial pressures of oxygen and inert constituents to the equivalent

alveolar oxygen (89).

Slow Decompression and Decompression Sickness

During prolonged exposure to atmospheres that contain physiologically

inert gases (nitrogen, hydrogen, helium, argon, xenon, and krypton}, the

body fluids (water and fat) contain amounts of these gases in solution propor-

tional to the partial pressure of the gas in inspired air and to the solubility

of the gas in water and fat at body temperature. If the body is subsequently

exposed to a much lower barometric pressure, inert gases tend to come out

of solution (the phenomenon of effervescence}. Oxygen, carbon dioxide, and

water vapor also diffuse rapidly into evolved bubbles of gas. Such bubbles,

if they form in tissues, may produce pain, especially around the joints.

Bubbles within fat cells may cause rupture of the cell walls, allowing fat to

enter the circulation. If bubbles form within blood vessels, they are carried

to the small terminal vessels of the lungs or the brain where they lodge, cut-

ting off the blood supply of the tissues behind the_-n.

The symptoms caused by evolved gas are known collectively as decom-

pression sickness. This disorder may be mild or it may cause incapacita-

tion. For any one individual, it is unpredictable in its onset and course,

though symptoms are rarely seen during the first few minutes of exposure

to low barometric pressure. Many factors, among them temperature, muscu-

lar work, age, body build, etc., influence susceptibility to decompression

sickness and the time course of symptoms (94, i05). A general time course of

symptoms experienced in decompression from sea-level air to altitude is

shown in Figure IZ-Z. The fraction of a group having symptoms in a given

time interval, is usually at a maximum betw_et_ t_v_:nty and sixty minutes.

After two to three hours exposure, very few subjects _et new symptoms.

The integral of the time curve, a plot of the cumulative iraction of those who

have developed any self-judged degree of syrnptonlatology against the time,

is an ogive curve having a point of inflection within the same twenty to sixty-

minute interval. The ogive curve of Figure 12-2a represents, in most direct
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Figure12-2
TimeCourseof Symptomsin DecompressionSicknessUponExposure

to Altitudefrom PriorEquilibrationto Air at SeaLevel
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and simple way, the quantitative information that can be gained about the

group in their reaction to low pressure. The specific shape of the ogive is a

function of the final pressure and the secondary factors mentioned above.
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Figure 12-2b indicates that if the logarithm of the time of onset of severe

bends after exposure to 35, 000 ft with exercise is plotted against the cumu-

lative percent reactors expressed in terms of standard deviates, a nearly

linear relationship is obtained.

Figure 12-2c shows the percent of exposed subjects per minute experien-

cing new symptoms (bends of grade 2 or > and chokes) at given times after

exposure to 38, 000 ft at rest from previous sea level conditions. The curve

is thought to reflect the size history of a typical gas bubble in the sensitive

tissue (94).
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The varied symptorns and pathological physiology of decompression sick-
ness have been reviewed in great detail ( I, 44, I02). One can summarize
the pathological physiology of the symptom complexes by dividing them into
several categories: bends, chokes, skin manifestations, circulatory collapse,
and neurological disorders. The relative incidence of the different symptoms
varies with the type and partial pressure of the gas of previous equilibration,
the level of exercise, and final altitude (102). Relative incidence from work in
altitude chambers are available (13, 14).

Bends, the most common symptom, is z_anifested by pain in the loco-

motor system. This pain usually begins in the tissue around joints and

extends distally along the bone shaft. Pain tends to occur in joints thatare

being flexed, It is deep and poorly localized with periods of waxing and wan-

ing. Relief is obtained by relaxation of the part or application of external

pressure to the overlying tissues. Symptoms may spontaneously disappear,

The next most common symptom complex is chokes. Chokes refer to a

syndrome of chest pain, cough, and respiratory distress. It usually requires

longer altitude exposure than that required for bends. It commences with

a burning pain under the breast bone during deep inspiration which is relieved

by shallow breathing and gradually becomes r_ore severe and constant.

Paroxysms of coughing become more frequent and are followed by cyanosis,

anxiety, syncope, and shock.

Skin lesions, causing itching and a red blotchy rash, usually occur only

after prolonged altitude exposure and are associated with or presage more

serious manifestations of decompression sickness. About 10% of those cases

going on to neurocirculatory collapse present previous skin changes. It

appears that passage of emboli to the skin is the most probable mechanism.

Neurocirculatory manifestations are the most serious. Cardiovascular

symptoms are varied: fainting, low blood pressure, coronary occlusions,

heart arrythmias, and shock have all been seen. Rarely, severe and pro-

gressive peripheral vascular collapse develops one to five hours post-expos-

ure to altitude. This reaction may or may not have been preceded by fainting.

Signs and symptoms of shock with or without neurological findings are seen.

Delirium and coma are more common when neurological findings are present.

All fatalities following altitude exposure are preceded by this picture of

delayed shock. It usually develops in subjects who have experienced severe

decompression sickness, especially severe chokes, but may be preceded by

few or no symptoms. The types of neurologic symptoms run the gamut of

almost every acute neurologic disorder. Convulsions, partial retinal blind-
ness and headaches are the most common.

Several semi-empirical equations have been proposed for rough, first-

order, prediction of bends frequency after decompression from atmospheres

containing a PN 2 other than that of air at sea level (8, 9, 10, 37, 10Z).

These have few other empirical data in their support (]0, 34, 37, 55, 68 ).

Unfortunately, decompression from a space cabin involves such conditions.

One can assume that a space-cabin atmosphere containing inert diluent should

have about 3. 5 psia (180 mmHgl of oxygen and a total pressure of 5 to 7 psia

for mini_rlumweight penalty (103). This would allow forl. 5to 3. 5psiaofinert
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gas. From the point of view of decompression, the lower the equilibrium
pressure level of inert gas, the lower the bends hazard upon subsequent de-
compression to a lower pressure. This would make the cabin with 7 psia
50% inert gas - 50% oxygen more hazardous than one with 5 psia - 70°_0inert
gas - 30% diluent. Prediction of the incidence of bends after decompression
from the more hazardous of the mixtures to a space suit pressure of 3. 5 psia
has been attempted (I02). Inadequacy of the empirical data precludes a very
precise prediction. The semi-empirical equation of Bateman ( 8, 9 ), sug-
gests that after total equilibration to the 7 psia 50% nitrogen - 50% oxygen
environment, a well-conditioned astronaut when decompressed to 3. 5 psia
(35,000 ft) at rest will have less than a I% chance of experiencing mild, grade
I-II bends. If moderate exercise is imposed, the incidence could rise to
about 70. For the general population with only average cardiovascular status
and conditioning through exercise, the bends incidence in exercise conditions
may be 10-15°. If the space suit pressure could be raised to 5 psia without
compromising the mission, the bends incidence should drop by about a factor of
3. Complete equilibration with a 5 psia - 30°/0nitrogen - 70o/0oxygen environ-
ment and subsequent decompression to 3. 5 psia would probably result in no
symptoms even with heavy exercise.

In comparison, Figure 12-5 suggests that direct decompression from air
at sea level to 3. 5 psia presents a more serious hazard. At rest, about 25%
of the astronauts would probably experience the bends. Depending on the
degree of exercise, from 50 to 100% of the individuals exposed could exper-
ience moderate to severe bends. Many would experience chokes and neuro-
circulatory collapse. Pre-flight or in-flight denitrogenation is certainly an
operational requirement in such circumstances.

The decompression hazard prior to the time period of complete equili-
bration with the space-cabin atmosphere (about 8 to 12 hours) is more diffi-
cult to predict. The amount of prior denitrogenation by preoxygenation
techniques is a critical factor. Data are available for specific profiles ( i0,
34, 37 ). Theoretically, five hours of preoxygenation should reduce the
symptom rate to that of the equilibrium condition noted for 7 psia 50_0oxygen-
50% nitrogen (see below). Shorter periods of denitrogenation possibly
dictated by operational restrictions will increase the decompression hazard
above this level during the early phases of flight (102).

Presence of inert gases other than nitrogen further complicates pre-
dictions of bends, chokes, or neurocirculatory collapse hazards in space
cabins. Several theoretical studies of the problem have been made. Both
the formation of stable gas micronuclei ( 10, 37 ) and rate of bubble growth
(102) have been considered as limiting factors in the incidence of symptoms.
Both approaches suggest that neon-oxygen mixtures should be safer than
helium-oxygen or nitrogen-oxygen as far as bends are concerned. Both
indicate that there should be little difference between oxygen-helium and
oxygen-nitrogen of the same composition. The few empirical data to the
point suggest the helium-oxygen produces slightly more frequent symptoms
than oxygen-nitrogen and the symptoms are more difficult to resolve by
recompression ( i0, 34 ). It should be kept in mind that these experiments
were performed under specific M.O.L. profiles in which the body was not
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fully denitrogenated and gases were in the unsteady state. Results may well

be different for conditions of complete saturation.

It is important that predictions specify whether or not the partial pres-

sure of gas assumed prior to decompression represents equilibrium or non-

equilibrium conditions. Age and physicaI conditioning are also major factors

determining incidence. Figure 12-3 represents age dependence of symptoms

with no special selection for physical conditioning. Body fat: lean weight

ratios are also important (87).

The amount of physical exertion is also important. The effect of exer-

cise rate on incidence of bends after sea-level equilibration in air is seen in

Figure 12-4. There is a steady increase in incidence from rest to about 10

deep knee bends every 15 minutes. Incidence varies significantly with the

type of exercise.
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Figure 12-4

Effect of Exercise on Incidence of Bends IOC
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Protection is afforded by denitrogenation. Total denitrogenation by

exposure to 100% oxygen atmospheres for periods of 16 hours or more can be

expected to reduce the incidence of bends to zero. Shorter time periods of

denitrogenation result in progressively greater incidence of bends. The per-

cent symptoms retained tend to be equal to the percent of residual body nitro-

gen after previous equilibration with air at sea level. The half time of the

second tissue compartment for nitrogen (68-73 minutes) seems to correlate

best with the half time of symptom reduction by preoxygenation upon exposure

with exercise to 35, 000 feet (179 mm Hg or 3. 5 psia) (65). For young

subjects in good physical condition the half time of nitrogen depletion and

incidence of symptoms can be as low as Z0 minutes. The dependence of the

denitrogenation rates and retained symptoms on age and physical condition in

several studies are seen in Figure 12-5. The broken lines represent loss of

protection produced by one hour of air breathing after the denitrogenation.

Various preoxygenation schedules have been tested in simulation of decom-

pression from space cabins (10, 34, 37, 55, 68).

Denitrogenation schedules for protection against bends caused by expos-

ure to space suit pressures in early phases of flight can be made from Table

12-6 which represents conservative protection factors taken from Figure 12-

5. The table is designed to cover groups which eliminate nitrogen slowly.

It applies to a suit pressurized at 35, 000 feet (179 mm I-Ig or 3. 5 psia) with

moderate exercise at altitude. The average nitrogen elimination curves of

groups greater than Z4 years of age are used in the tables for the category

"probable protection." Curve #i0 of Figure 12-5 appears in the table as the
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Compilation of All Data Bearing on Rate
of Protection by Preoxygenation and Rate
of Nitrogen Loss from Critical Tissues

Curves 6, 7, and 9 represent data of three

different investigators on same age group.

Legend

1. 18 yr old group (fastest curve) - 35,000 ft.

2. 18 yr old group (average curve) - 35,000 ft.

3. <24 yr old group (fastest curve) - 35,000 ft.

4. 17 yr old group (average curve) -- 38,000 ft.

5. 27 yr old group (average curve) - 38,000 ft.

6. <24 yr old group (average curve) - 35,000 ft.

7. <24 yr old group (average curve) - 35,000 ft.

8. Mixed group average protection rate- 35,000 ft.

9. <24 yr old group (average curve) - 35,000 ft.

10. <24 yr old group (slowest curve) - 35,000 ft.

11. 35 yr old group (average curve) - 38,000 ft.

12, Single subject (slowest curve) -- 35,000 ft.

(After Jones (65))
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Table 12-6

Protection a of Groups b Compared to Ascent Without Preoxygenation

(After Jones (65))

Pre _xvgenation. hr Minimum t'robable
protection, percent re,tee,ion, percent

0.5 ......................

1.0 ......................

[.5 ......................

2.0 ......................

2.5 ......................

3.0 .....................

3.5 ....................

4.0 .....................

4.,% .....................

5.0 .......................

5.5 .......................

6.0 .......................

6.5 .......................

7.0 .......................

16 26

29 4h

4l 59

50 7()

58 77

61 83

7(I 87

75 91

79

82

85

86

89

91

" Zero protection equals incidence of dec,,mpression sick-

ness of group wilhout preflight oxygen when ascending to

altitude at 4000 feet per minule.

h F,,r group predieti.n and .or for individual prediction.

"minimum protection" category. Unless age or nitrogen elimination charac-

teristics of a group are known, prediction should be made with "minimum
protection" category. "Protection" is given in percent improvement over the
expected condition of preflight oxygenation for that group and ascent to altitude
no faster than 4,000 ft/min. For example, if at 35,000 feet a group exper-

iences 70°7o symptoms, and 50°7o forced descents with no preoxygenation, after
one hour of preoxygenation one would expect from Table 12-6, a"minimal

protection" group of:

70 x 0. 29 = 20. 3%; 70 - 20. 3 = 49. 7% symptoms
50 x 0.29 =- 14. 5%; 50 - 14. 5 = 35. 5% descents.

Preflight contingencies requiring return to air breathing entail a loss of

protection. Table 12-7 represents the protection retained after breathing

oxygen for periods of l to 7 hours followed by air exposures of I/2 to 1 hour.

The rate of depletion of inert gas stores in the body after breathing 100%

oxygen have been determined for nitrogen and helium. The rate of inert gas

elimination follows the exponential equation:

-klt -kzt -k t

dOg/dr = klAle =kEA2e + ...+ knAne n (i)
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Table 12-7

Protection a Retained When Preoxygenation is Interrupted with Air Breathing

(After Jones (65))

()_

Time, hr ............................... ] i/= I !

Minimum

protection.

f_rcent ............................... 29 26 I 20
Probabh"

protection,
percent ............................... 45 33 I 25

I1

()_ Air [[02 .4,

2 Vz 1II 3 V2

50 40 331164 54

I

70 52 391183 62

ir O_ / ,r

1 4 t/2 1

!
4.6 75 62 53

I

46 91 67 50

/

02 q _ir 02 i A r
i

51 V_ I 1 6 _/_ 1

I
i

82 68 60 86 74 62

95 I 70 52 97 72 54

............. L........ _- ....
" Zer. pn,te('ti.n equals inciden('e of de('(}mpression sick'ness of group without preflight oxygen when ascendin

of 35 000 feet at 4(_0 feet per minute.

where: Q
g

t

k

A

= the amount of gas lost (cc)

= time (minutes)

= exponential time constant of each storage

compartment

= original volume of gas in each exponential

storage compartment (cc).

The exponential equation for nitrogen elimination is (65):

O2 Air

7 _/2 I 1

91 74 I 62

97 : 73 ] 54

h) an ahitude

- -. - 025t - 0047t
= 51. 2e "462t + 16.8e 087t + 10. 3e " + 3. 3e " (2)

This is plotted as Figure 12-8a.

The rate of helium elimination is much less certain. Three independent

studies have given 3 different equations { ii, 42, 66). Uncertainty regarding

the early period of elimination is a major cause of difficulty. A desaturation

equation defining the fractional rate of helium elimination after a iZ hour

saturation period is (42):

R t = 0. 25e -0" 5t + 0. 045e -0" 135t + 0. 0022e -0" 025t + 0.0006e -0" 0073t (3)

where: R t is the fraction remaining at any time, t.

Figure 12-8b is the graphic representation of this equation with constants

indicated for each exponential.

Further development of recent attempts at theoretical analysis of gas

kinetics in diving may allow more definitive predictions of inert gas hazards

in the space operations (67, 72, 10Z, 108, IIZ ). These electrical and

pneumatic computer techniques appear particularly promising. Another

potential tool in substantiating any theoretical analysis is the ultrasound
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Figure 12-8

Rate of Inert Gas Elimination from Body
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technique for bubble detection ( 53, 88 ). If the technique can be refined and

calibrated it could possibly be used to determine in a more quantitative way

the relationship between body movement, tissue supersaturation, the genera-

tion of bubbles, and symptoms (i02).

A review of the treatment of decompression emergencies in space opera-

tions is now available ( 26 ). Recompression to the maximum allowable

pressure of suit and cabin in I00% oxygen would probably offer the best

immediate solution (86). In space chambers the standard U.S. Air Force

approach is recommended ( 87 ). Supportive treatment of severe emergencies

has been reviewed ( Z6 ).

Protection of astronauts in space by elastic fabric or foam sponge suits

is currently under study (54, 96A, llg}.This approach may counter the bends

problems, and, at the same time, reduce the inconvenience and reduction of

mobility presented by current pressure suits.

Several equations have been proposed for rough, first-order, prediction

of bends frequency after decompression from atmospheres containing a PN 2

other than that of air at sea level (i0, I02). These have little empirical data

in their support. Unfortunately the physical condition of the subjects and the

equilibrium conditions of inert gas saturation have varied in different studies

iZ-lO



(9, I0, 34, I02_. The data of Tables ll-Z and ii-3 and Figure II-4 of Inert

Gas (No. ll) may be used in the calculation of these equations.

The slow leakage of gas from space cabins is covered in Inert Gas (No.

ll).

Rapid (Explosive) Decompression

Rapid decompression of spacecraft or suits can result from accidental

trauma or meteorite penetration. Post-meteoritic disruption of space cabin

walls and accompanying fire and blast hazards has been reviewed (101).

Decompression of space suits by meteorites is a constant hazard during EVA

operations (i01). Damage to the body by low-velocityimpacts is covered

under Impact in Acceleration (No. 7). Little is known of hypervelocity impact

effects in humans or animals (i01). Protection against meteoroid penetration

of space suits is accomplished by a combined thermal and anti-meteoroid

coverall (85).

Antimeteoroid Coveralls

In the Gemini G4C extravehicular space suit, the extravehicular cover-

layer consisted of an outer protective layer of high-temperature-resistant

(HT-1) nylon, a layer of nylon felt for micrometeoroid protection, seven

layers of aluminized Mylar and unwoven Dacron superinsulation, and two

additional layers of high-temperature nylon for micrometeoroid shock ab-

sorption. The meteoroid protective coverlayer design used on the Gemini IV

mission was proof tested with simulated meteoroids. The Gemini G4C suit

configuration was qualified to provide a 0. 999 probability of no penetration, Po,

of the bladder. In a system pressurized to 3. 7 psig, samples of 4 by 4" swatches

of the meteoroid coverlayer on the bladder were impacted with simulated

meteoroids-of cork and epoxy, glass and porosi]icate in the 5 to 27 km/sec

range. Since these projectiles approximate the meteoroidal energy that is

absorbedby the coverlayer, a corresponding Po for a 10-minute exposure was

determined. The exposure was for a near-Earth orbit and 25 ft2 of surface

area on the space suit. Apyrex glass sphere 274 microns in diameter at a

velocity of 6 km/sec approximates the energy necessary to obtain a Po of 0. 999

for a 10-minute exposure

Samples of lexan and merlon polycarbonate visor material were pres-

surized to 3. 7 psig and impacted with glass spheres accelerated to hyper-

velocity with the AVCO RAD light gas gun. The projectile impact energy

was progressively increased, until the sample was perforated or a leak

occurred. An examination of the targets revealed that the 0. 098-inch-thick

merlon and lexan withstood the impact of a 0.01 56-inch glass sphere at a

velocity of 6 km/sec without spall or leakage. This projectile energy, when

extrapolated to meteoroidal velocity and density, corresponded to a Po of

0. 99993 for 135-minute exposure. The need for reduced coverlayer bulk to

improve unpressurized suit mobility and pilot comfort was noted.
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The G4C space suit assembly used in the Gemini VIII mission was similar

to the one used in the Gemini IV mission. However, the configuration of the

micrometeoroid protective layers of the extravehicular coverlayer was

modified to utilize two layers of neoprene-coated nylon in lieu of the nylon
felt and 6-ounce,HT-1 nylon,micrometeoroid layers. Also, the extravehicular

pilot used integrated pressure thermal gloves in lieu of the pressure gloves

and overgloves used for Gemini IV. The gloves were designed to protect the

hands from micrometeoroids and to prevent conductive heat transfer through

the glove palms caused from touching surfaces with temperatures ranging
from 250o to -150 ° F. Structurally and functionally, the gloves were similar

to the standard intravehicular pressure gloves with a pressure bladder, a

restraint layer, and a wrist connector. A 1/8-inch-thick, flexible, insulating,

silastic material was provided on the palm side of the glove for conduction

insulation. Micrometeoroid protection was through additional layers of

fabric used in the layup of the glove. The micrometeoroid testing of the new

coverlayer material deFnonstrated a Po of 0. 999 for worst-case conditions.
The extravehicular space suit components were not used for EVA because of

early termination of the mission, However, tile reduced coverlayer bulk

resulting from the change in micrometeoroid protective materials improved

the unpressurized suit mobility for the intravehicular operations.

The addition of the Astronaut Maneuvering Unit (AMU) to the flight plan

for Gemini IX-A required extensive modifications to the coverlayer of the

G4C space suit. The lower forward-firing and downward-firing AMU

thrusters impinged upon the legs of the suit. Temperatures as high as 1300 °

F were possible at the AMU thruster impingement areas on the suit surface.

Since the HT-I high-temperature nylon, which is normally used for the cover-

layer, is not recommended for continuous use at temperatures above 500°F,

new suit materials were required. A stainless steel fabric was incorporated

into the legs of the suit coverlayer to protect it from the heat generated by

AMU thruster impingement. Analysis and testing also indicated that the

temperatures inside the thermal insulation layers of the coverlayer would

exceed the melting temperature of the aluminized Mylar..Aluminized H-film

was developed and found to be adequate for the temperatures expected and,

when separated by layers of fiberglas cloth, worked well as a high-temperature

thermal insulation. Eleven layers each of almninized H-film and fiberglas

cloth were incorporated into the legs to provide thermal protection during

AMU operations. A standard extravehicular coverlayer layup was utilized

for the upper torso and the steel outer cover with aluminized H-film and

fiberglas cloth was used as thermal insulation for the legs. No meteoroid

penetrations of this system were recorded.

The coverall of Gemini X and XI suits were similar to the Gemini VIII.

The Gemini XII space suit used by the pilot was a slightly modified version

of the one used for the Gemini IX-A mission. The stainless steel fabric on

the legs was replaced with high-temperature nylon, and four layers of the

aluminized H-film and fiberglas cloth superinsulation were deleted from the

suit legs. The coverlayer thermal layup was quilted to the first layer of

micrometeoroid protective material. A rectangular pattern was quilted over

the torso area, which strengthened the thermal layer and reduced the possi-

bility of tears or rips in the aluminized H-film and aluminized Mylar layers.

The suit operated well; no meteoroid punctures were recorded.
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The physiological response to rapid decompression must be considered

from several points of view: The time of useful consciousness, damage to

the lungs by explosive decompression, and the ebullism syndrome.

Time of Useful Consciousness After Rapid Decompression

The time of decompression (v), after puncture of disruption of a cabin
wall needed to attain a given ratio of final to initial pressure (Pf/Pi), is a

function of the orifice coefficient (Cd) and the ratio of orifice area (A) to

cabin volume (V) (17, 103). Figures 12-9a and b represent this relationship
for several different gas mixtures suitable as space cabin atmospheres (102,

103). The equation assumes sonic orifice flow for isothermal and isentropic

decompression. A sample calculation for isothermal flow using Figure 12-9a:

For a hole 1/2 inch in diameter, an orifice coefficient (Cd) of 1, and a psia

oxygen can be determined from Figure 12-9a by using the ratio 3.5 to 5. 0 or 0. 7

to give:

TCdA /sec ft2)= O. 000575_ ft3

and

I
I

I
[

0.00575 x 770
T = = 325 sec

7rx (0. 25) 2

144

Figure 12-9

The Sensitivity of Rapid Decompression to Composition of Atmosphere

After Roth (103), adapted from Boeing (17))
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The time to reach minimum tolerable partial pressure of POz can be calculated
by the factors of Figure IZ-l. This reduces the available time considerably.
(Table 12-i0 represents the time in minutes required to meet minimum toler-
able total pressures as determined by minimal POz levels for I/2 inch and 3/4
inch holes under isothermal and isentropic conditions with five proposed atmos-
pheres.) It can be seen that in all cases, the _xygen-nitrogen mixture at 7
psia takes the longest times and i00 percent oxygen takes the shortest time
to reach the critical condition. The larger the hole, the less the absolute
difference between mixtures. Pure oxygen gives more than twice the time of
useful work than do the other gas mixtures at 5 psia. The lower the partial
pressure of inert gas, the less time required to reach both endpoints and the
greater the difference between the two criteria. From the point of view of
the human subject, Table 12-10 presents the 1_ore valid endpoint than just
pressure. At equivalent composition and pressure, nitrogen has a slight
advantage over helium.

Table 12-10 '

Decompression Time to Minimum Tolerable Total Pressure as Determined by Minimum

Acceptable PO2; (Cabin Volume = 770 Ft3; Orifice Coefficient = 1)

(After Boeing(17))

! l
3.5 p'tia Oz 3...5 psia Oz i _.5 t,sia Oz I 3.5 psia O_ 5.0 psia ()_
3.5 psla Nz 3.5 psia lie 1.7, psia Nz 1.5 psia He

l.eak mode .......

7.0 psia 7.0 psia 1 .% (I i,sia _ 5.0 psia

l)¢_( ()l[I,lil¢'_.'_i,,l{ limt', I||lO

..... ( r { /
Isothermal- V2-inch hole .............................. 6.17 _i 2

lsothermal-a/4-inch hole ...................... 2,7,5 _ 21 1.0 / .86 2.41

There may be operational significance between tLe maximally divergent
times of 6 minutes and 2 minutes for the i/Z-i1_ch hole with isothermal flow.

If the mission requires at least 6 minutes for donning an emergency suit in a

high-risk phase, this difference may well be critical in the selection. The

probability of a penetration producing such a hole size is obviously a major

mission-specific factor to be considered.

There are several other minor considerations in the area of fast-flow

systems. These are the maximum airlock du_nping and repressurization times

during extravehicular operations and the maxin_um rate of cabin pressure

dumping during fire emergencies. The dumping of airlock and cabin would,

of course, follow the more isentropic type of flow. The faster the flow

through the maximum orifice available, the more advantageous the gas mix-

ture. One would therefore have to weight the advantage of having a more

rapid dumping capability for a suited crew against a less-rapid emergency

dumping after accidental puncture with an unsuiled crew.

The repressurization of an airlock from a vacuum to the pressure of the

main compartment is most rapidly accomplished by opening a valve between

the two chambers. In most cases, the pressure and temperature of the main

compartment is maintained constant by the gas feed system and the compres-

sion will be close to isothermal because of the great flow turbulence in the
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airlock. The flow across the valve starts off as a supercritical pressure ratio

and then becomes subcritical when

where P
C

Plk

P /PIR:
C

= cabin pressure

= lock pressure

I 2V+I V-I (4)

The approximate time required to recompress a lock isothermally from

vacuum, Tt, can be determined for air of _ = 1.4 by the equation

v _ m (5)
Tt - l 30 CdA Tlk

where rn

Tlk

= average molecular weight of the gas

= is the absolute temperature of the lock

= ratio of specific heats.

This aspect of a space mission will be critical only when a crewman

must be retrieved most rapidly through a lock to a cabin. Since the relatively

small volume of the lock suggests that the minimum time for recompression

will not in any practical way limit the survival potential of the crewman, the

effect of atmospheric composition should have little practical effect on the

survival. The difference in time, measured by seconds, which will be given

the entering crewman by an optimum gas mixture does not appear to warrant

a thorough analysis of the problem in the present context. Such an analysis

is available (30). That the gas-specific factor will probably not be critical

is indicated by their calculation from equation (5) that a lock of 40 ft3 can be

isothermally pressurized by air to 99 percent of the main compartment pres-

sure through a valve of only 0. 58 in. 2 in 30 seconds. Doubling the area of

the valve can reduce this time to about 15 seconds. Since the time required

is proportional to the square root of the molecular weight, substitution of air

(molecular weight = 29) by the proposed mixture of lowest molecular weight,

helium-oxygen mixture at 7 psia (molecular weight = 18), will reduce mini-

mum compression time by only a few seconds. For larger lock systems, the

number of seconds to be saved will increase as will the physiological signifi-

cance of the savings. However, the valve size can be increased to meet this

demand in a large lock.

One must also consider the airlock pumping weight penalties. The air-

lock may be pumped into a separate storage tank or into the main compart-

ment. The effect of atmosphere composition on this penalty is currently

under study (109). Data are also available on a new elastic recovery principle

in the design of airlocks (23).

One must be aware of the time of useful consciousness following decon--

pressions lasting several seconds. Following rapid decompression to an
ambient PO Z equivalent to altitudes of about 25,000 feet or above, conscious-

ness is rapidly lost (84, 97).
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Figure 12-11 represents the mean and minimum times of useful conscious-
ness available when air or i00% oxygen are being breathed at sea level pres-
sures before and during the decompression.
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Figure 12-11

Minimum and Mean "Times of Useful Con-

sciousness" Following Rapid Decompression

of Humans Who Are Breathing Either Air
or Oxygen Throughout Decompression

(After Blocktey and Hanifan (16), after data

of Luft (83) and others

The "time of useful consciousness" becomes shorter with increasing
altitude until a minimum time is reached. This minimum is reached at about

46, 000 feet (106 mm Hg or 2. 04 psia) when air is breathed throughout the

decompression, or, about 52, 000 feet (79 mm Hg or i. 53 psia) when oxygen

is breathed throughout the decompression. There is a "critical time of

exposure" during which an individual must breathe an adequate partial pres-

sure of oxygen if continuous consciousness is to be preserved. This time

also reaches a minimum with increasing altitude ( 3, 24, 83). Oxygen must

be given within 7 secs in order to preserve continuous consciousness in

subjects decompressed from 8,000 feet (564 mm Hg or i0.91 psia) to 40,000

feet (141 mm Hg or Z. 72 psia) in 2. 5 sec. The "critical time of exposure"

should not exceed 5 to 6 sec in rapid decompressions (2 sec) to altitudes

above 52, 000 feet (79 mm Hg or i. 53 psia). Specific symptoms resulting

from oxygen lack or hypoxia may be found in Oxygen-CO2-Energy (No. 10).

Treatment of hypoxic emergencies resulting from exposure to vacuum is

covered below under ebulism (26, 99 ).

Lung Damage from Explosive Decompression

Sudden disruption of a cabin wall or a space suit may decompress an astro-

naut or test subject rapidly enough to damage his lungs. The problem has

been recently summarized by two reviews from which much of the following

material is taken (79, 99 ).

The severity of mechanical effects on the body in rapid decompression

is dependent on the change in absolute pressure, the ratio of initial to final

pressure, and the rate of decompression. The latter can be defined rather

precisely on the basis of physical theory if the pressure conditions, the volume

of the cabin or suit and the size of the aperture ace known or can be assumed
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(46, 48, 51,90 ). In the presence of humidity, the decompression is neither an
adiabatic nor an isothermal process, but is polytropic in character. The rate
of flow through the orifice may be of subsonic or sonic velocity, according to
the pressure ratio across the orifice. If the critical ratio of approximately
Z to i is exceeded, Lhe escape flow will be constant at the speed of sound
regardless of how high the pressure head may be. The initial rate of change
in pressure is determined by the absolute magnitude of the initial cabin pres-
sure. For all practical purposes, the complex factors that define the decom-
pression transient can be resolved into two principal determinants (51).
The firstof these, which sets the absolute time scale of decompression, will
be referred to as the time constant (tc)

t V(m3)- (6)
c A (m 2) • C(m/sec)

It is defined by the ratio between cabin volume (V) and the effective area of

the decompression orifice (A). The velocity of sound (C) is introduced as a

characteristic of flow that eliminates the effect of density. It will be seen

that tc must appear in units of time, all other units canceling out. The time

constant is independent of pressure. The chart in Figure 12-12 is a graphic

solution of equation (6) relating cabin volume and effective orifice to the time
constant in metric units.

TIME CONSTANT

'°°°I //_/,, ,, ,,1 //_/, ,,,,,,, //_/, ,,,,,,,: ! /_j/,,,r, 7"r'rr,r

J _ _,'_

D ' 0_"

• .co .or .t IO Io -- Io,,_
AREA OF ORIFICE, m2

The volume of the pressure cabin relative to the effective area of the decompression
orifice determines the time constant of decompression. For the respiratory tract this
depends on the lung volume and the flow resistance of the airways at the time of
decompression•

Figure 12-12

Time Constants of Explosive Decompression

(After Luft(79))
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The second determinant is the pressure faclor (PI) derived for a poly-
tropic process under subsonic or sonic conditions of flow. P1 is a function
of the initial cabin pressure (Pi) and the final pressure of equilibrium with
the environment (Pf), and is independent of the absolute pressure (51 ).

P

PI = f i (7)
P
f

The values for P1 can be read for any desired pressure ratio from the curve

in 12-13a. The total duration of decompression (td) is the product of the

time constant (tc) and the pressure factor Pl"

t d = t c Pl (8)

The relationships expressed in equations (6) and (8), which have been

verified in numerous experiments, are convenient for estimating the decom-

pression time on the basis of cabin volume and the configuration of windows,

doors, or canopy for various cabin pressures at altitude. Similarly, the

volume to orifice ratio and the time constanl of any decompression situation

can be estimated if the elapsed time of decompression and the pressure ratio

P'/Pfl are known.

Under vacuum conditions, the duration of decompression becomes

extremely long because the final equalization of pressure is very slow. Under

these circumstances, the initial part of the transient where the rate of de-

compression is constant (constant rate time) is more meaningful, as far as

biological effects are concerned, than the total duration of decompression.

As shown on Figure 12-13b the line of initial rate of change is extended until

it intersects the ambient pressure Pao. The point of intersection marks a

time which is evidently related to the initial rate of pressure change and the

pressure difference. This "constant rate time '_{tcr) can be calculated from

the time constant (tc) and another pressure factor (P3) which may be read

from the curve so designated on Figure 12-13a for _he appropriate decom-

pressure ratio:

t = t P (9)
cr c 3

If an individual were decompressed from an initial cabin pressure, Pi,

to a final pressure, Pf, at altitude with closed airways in the absence of any

change in his lung volume,the pressure in his lungs, PL, would remain equal

to Pi, and the pressure gradient, _PL, sustained by his lungs and chest

would be equal to the total pressure difference of decompression.

APL = PL - Pf-- ]P_ - pf (10)

On the other hand, if the gas in his lungs could expand without constraint, as

in a frictionless piston, its volume would increase from V i to Vf until PL

became equal to Pf. The relative gas expansion, ROE, assuming isothermal
conditions with water vapor pressure at 47 mm Hg would be (78)

12-18



i

m_

!

4

z

=.

II • .-4-"

1.5 2 3

a,

Figure 12-13
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b. Definition of Constant Rate Time tR

{After Haber and Clamann (51))

(After Bancroft (6))

Vf P'I - 47

-- Pf- 471

= e,G_ (1])

The lung fs neither a rigid container nor a frictionless piston, but an

elastic container with limited capacity. The pressure difference across the

lungs and chest will tend to expand their contents toward a maximal intact

volume,Vmax, or beyond. The virtual pressure in the lungs, PL' at the

moment in which the maximal intact volume is reached, is estimated by

modifying equation (i l} accordingly.

V P. - 47
max 1

_ I_L - 47
(12)

and solving for PL'
V°

.. I (P. - 47)PL V I + 47
max

(13)

The pressure difference, _PL, is found by substituting equation (13) for

PL into equation {i0):
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V.

- 1

APL V (PI 47) + 47 - Pf (14)
max

It is apparent from equation (14) that when the initial and final pressures

of decompression are given, the volume of gas trapped in the lungs relative

to the total capacity is the factor determining the critical pressure gradient.

According to the animal experiments and human experience, rupture of the

lungs is liable to occur when AP L exceeds 80 mm Hg (64, 79, 95, i06 ).

Counterpressure exerted by the chest cage when *.he lungs are passively dis-

tended to their full capacity (relaxation pressure) explains the fact that

excised lungs disrupt at a pressure of only 50 mm Hg. Furthermore, when an

animal's trunk is bound with inelastic fabric or laid in a plaster cast, trachael

pressures as high as 180 mm Hg are tolerated without discernible damage to

the lungs ( 95 ). These findings point to the fact that high pressure in the

lungs is dangerous only if it is permitted to expand pulmonary tissue beyond

its tensile limits. In the act of coughing, intrapulmonic pressures of more

than 150 mm Hg are tolerated frequently without untoward effects, in the

absence of pulmonary pathology. In contrast to the process of passive infla-

tion, the pressure pulse of a cough is the result of active muscular effort,

which actually reduces lung volume by compressing its gas content.

By means of equation (14) one can estimate whether the critical pressure

for £PL will be exceeded for decompressions of known initial and final pres-
sure with closed airways. If AP L, calculated from equation (14) is less than

30 mm Hg, then the decompression in question would not expand the lungs

from V i to Vmax and, therefore, would not be dangerous. The initial and

final pressures for which the critical overpressures of 80 mm Hg would be

reached in the lungs must be calculated for three different lungs volumes:

full expiration (Ex}, full inspiration (In}, and for _he normal respiratory

position around the midlung volume. The probability is very high that inad-

vertent decompression would occur during nor_nal respiratory excursions,

and it is reasonable to assume a value of 0. 55 for Vi/Vma x in equation (14)
for most instances.

Evaluation of damage risk to the lung during space operations in the case

of breathholding has been reviewed using these relationships. The pressure

gradient which exists across human lungs and passively distended chest wall

during an "explosive" decompression to a vacuum occurring while respiratory

passages were closed was calculated for internal pressures of 7 psia and
5 psia which are cur_zently considered for spacecraft and 3. 7 psia for space

suits. Three different lung volumes prior to decompression are considered:

full inspiration (Vi/Vma x = 1.0), the normal end expiratory position (Vi/Vma x
= 0. 55), and full expiration (Vi/Vma x - 0. 25). These data are presented in

Table 12-14. It is interesting to note that all pressure gradients under these

conditions are over the previously stated critical level of about 80 mm Hg.

Therefore, an "explosive" decompression in a vacuum while respiratory

passages are closed is considered a very great hazard from the standpoint of

serious lung injury.
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Table 12-14

Pressure Gradients Across an Astronaut's Lungs and Passively Distended Chest
During "Explosive" Decompression in Space with Closed Glottis

(After Busby (26), from the unpublished calculations of Luft

Pressure gradients AP L calculated for different ambient atmospheric pressures.
(Pi) and lung volumes (Vi) prior to decompression to a vacuum (Pf = 0).

V i AP L at AP L at AP L at

Vmax PI : 7.0 psia Pi : 5.0 psia Pi : 3. 7 psia

(362 mm Hg) ( 259 rnm Hg) (191 mm Hg)

1.0 362 mm Hg 259 ram Hg 191 mm Hg

0. 55 220 mm Hg 164 mm Hg 121 ram Hg

0. 25 126 mm Hg 100 mm Hg 83 mm Hg

In explosive decompression during normal respiration, the case is more

complex (79, 81, 82). If the time characteristic of the human lung and airway

is greater than the time characteristic of the pressure suit or cabin in which

an individual is confined during the decompression, a transient differential

pressure will build up between the lungs and ambient atmosphere. This is
illustrated diagrammatically in Figure 12-15.

The heavy line in Figure 12-12 represents the time characteristic of the

human lung with open glottis on a background of the volume-to-orifice ratio.

There is a critical V/A ratio of the cabin or suit relative to this ratio of
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Figure 12-15

Time Characteristics of Overpressure
in the Lungs

(Adapted from Luft (80) by Billings

and Roth (15))
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the human respiratory tract determining the threshold for injury or death.
Another factor that influences the transthoracic pressure transient is the
pressure ratio (Pi/Pf). It can be shown mathematically and empirically that
if decompression takes place over the same pressure difference, but at
higher altitude where the pressure ratio is greater, the amplitude of pressure
differential of Figure 12-15 remains the sazne, but the duration of the trans-
ient is longer (79, 81 ). ]'his means that the area under the differential
pressure curve which represents the impulse in reruns of

force (dyne) x time (sec)

area (cm 2)
(15)

is a function of the decompression ratio. Unfortunately, there are no data

correlating lung damage directly with impulse. The shape and duration of a

blast wave is certainly a factor in predicting dan2age from overpressure (22 ,

98 ).

The conclusions to be drawn from these model analyses can be summarized

as follows: i) The maximal possible amplitude of the transmural pressure

in the lung model is equal to the pressure difference of decompression

(Pi - Pf). 2) The fraction of the total pressure difference effective in the

lung is dependent on the V/A ratio in the lung to that of the suit or cabin. 3)

The pressure ratio of decompression (Pi/Pf) deter_ines the force x time

integral or impulse for any given amplitude of the transthoracic pressure

transient and, therefore, the duration of a critical overpressure.

In addition to the perturbing effect of water vapor in the lungs, the most

important shortcoming of a rigid model is that ii fails to simulate the elastic

expansion of lungs and chest in decompression, as would occur according to

equation (14) for isothermic conditions, with a corresponding drop of pulmonary

pressure. In dogs, expansion is not apparent before l0 msec (i17). In man,

the time lag is probably even greater, since it is a function of the mechanical

impedance of the lungs and chest which increases with body size (41, I06).

According to the cinematographic data, decompression of the lungs takes

place in three phases. The first is under essentially isometric conditions with

no change in volume, owing to the inertia of the system. The highest trans-

thoracic pressures are probably attained during this phase in which the lungs

are comparable to a rigid bottle. In the second phase, the pressure is atten-

uated due to expansion of the chest and also to the continuing escape of gas

through the airways. In the third phase of maximal expansion, the conditions

are again isometric until the overpressure is dissipated and the lung volume

decreases. Structural damage is conceivable during the first and second

phases, when the peak pressure creates powerful dynamic forces opposed by

the inertia of the system. In a medium consisting of components with widely

different densities, such as the organs in the chest, differences in accelera-

tion under the impulsive pressure loading couid result in shearing and spalling

lesions similar to those encountered in blast injuries in the vicinity of

explosions (29, 107). During the third phase of maximal expansion of the

lungs, the mechanism of injury would be comparable to that assumed for

decompression with closed airways, namely, r,pture of tissues at the limits
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of their tensile strength. Penetration of gas bubbles into the bloodstream
most likely take place when the lungs are fully expanded and a high gradient
is created between the intrapulmonic pressure and that in the pulmonary
veins and left atrium (106). Air embolism may be facilitated at this time

at the sites of lung damaged in the first two phases of decompression.

Experimental substantiation of this model is difficult. Experimental

procedures often do not exclude the influence of hypoxia and decompression

sickness or of boiling phenomena on the experimental animals; and more often

no effort is made to discriminate between the many factors involved by keep-

ing one or more of these constant. Nevertheless, certain notable relation-

ships emerge that support the following concept. There can be no doubt that

the rate of decompression is a decisive variable in the mortality of animals

(79). This holds true from initial pressures of latm., at differential

pressures of greater than 630 mm Hg ( 0. 83 atm. }, and decompression times

from 0. 630 to 0.0014 second. Since the decompression time is also influenced

by the pressure ratio of decompression which differs considerably, the V/A

ratio is preferable as a characteristic of the rate of decompression. In all

tests where V/A was 15 m 3 per m 2 or more, all animals survived. A signifi-

cant number of fatalities appears when V/A was 3. 3 m 3 per m2, and the LDb0
corresponded to a V/A of I. 1 to i. 2 m3 per m Z. In the only investigation

where I00 percent mortality was produced, a special decompression device

with a V/A of . 12 m 3 per m 2, was used (72). In decompression of such

extreme rapidity, there can be very little escape of gas from the lungs before

the full pressure gradient becomes effective and the lungs and chest are over-

distended with a pressure load practically as great as if the airways had been

completely closed. If this were true, one would expect some fatal injuries

to occur under the same pressure conditions as found in decompression with

closed airways. According to equation (14) solved for decompression from

sea level with closed airways at midlung volume, a critical AP L of 80 mm Hg

can be predicted when the final pressure is lower than 359 mm Hg or 0.47 atm.

When rats "were exposed to increasing pressure differences from an initial

pressure of 735 mm Hg with a V/A of . 12, an increasing number of fatalities

were observed whenever the final pressure was less than 368 mm Hg (0.48

atm) (7?). Conversely, the fastest decompressions were innocuous when

this pressure range was not exceeded. Convincing evidence that the mechan-

ism of fatal injury is overdistention of the lungs and not the pressure pulse

per se was obtained by exposing animals with an artificial pneumothorax to

extreme decompression and finding less trauma than in the untreated (72).

With slower rates of decompression and open airways only a fraction of

the total gradient of decompression will come to bear upon the lungs as more

gas has had time to escape before they are fully distended. As pointed out

for the rigid model above, the amplitude of the pressure transient in the
lungs is dependent on the V/A ratio of the lungs and airways relative to that

of the suit or cabin system. From intrathoracic pressure transients recorded

in man it has been estimated that the human lungs and airways correspond to
a V/A of approximately 180 m3 per m 2. For dogs, this V/A ratio is 100 (117).

This indicates that the dogs may tolerate somewhat lower cabin V/A ratios

than humans. However, this difference may welI be due to the different

experimental techniques used to obtain the values. These figures provide a
cue for safety limits in the permissible rate of decompression, since
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decompression to unlimited altitudes would not give rise to disruption of the

lungs if the V/A of the cabin were no less than the human equivalent.

Experience with human exposure to decompression at low cabin V/A

ratios is very limited (12, 28, 39, 40, 62, 76, 79, 99, i13 ). Well-

documented, danger-zone decompressions with open glottis have been limited

to those recorded in Table 12-16. It can be seen that only the first exposure

Table 12-16

Rapid Decompression Tolerated by Man

(After Luft (79))

n
_ - .... [

l Pi," Pf,+
Re[. No Allltude, (eet rnm ][g mrn lIg

Sweeney 1 1 3 io 27,ooo 45,000 u53 it,2

Sweeney 6 15 8.o00 35,0oo 565 179

D6ring 40 x3 9,8oc_ 49,1 oo 526 qo

P, • I'f, }'_ P_ Time, sec
mm lie :
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436 5 83 "230
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a Ap L is the overpressure which would occure in the lungs if the airways
were closed at midlung volume; critical pressure is 80 mm Hg (Eq. 14).

±PL§,
mm I{g

48

:53

220

of Sweeney would have had a cabin V/A ratio (i m3/m 2) well within the

expected lethal range. Even under closed airways at midrespiratory volume,

the pressure ratio Pi/Pf would have been small enough in the first case with

low V/A ratio to have prevented the critical overpressure of 80 mm Hg from

being reached (79 }.

Figure IZ-17 is a summary curve which represents a rough evaluation

o._oY
i

o
u

2oo

ZONE OF PROBABLE DANGER

ie.ZONE IN WHICH LESIONS

DO _ I_ IOta3 5

DIMENSIONAL FACTOR, Fz =

Figure 12-17

Curve Derived from Human and Animal

Data Defining the Zones of Safety

and Probable Danger in Explosive

Decompression with Open Glottis
(See text)

(After Fryer (28) from the data of Violette (117))
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of the relative dimensional and pressure-ratio factors defining the zone of

possible injury under glottis-open conditions. The curve does have some

shortcomings. For instance, it is doubtful whether it is permissible to plot

animal and human data on a common figure. Again, the degree and actual

aetiology of damage in animals in many series of experiments is not fully

known. Comparison with animal data (72) and the data of Table 12-16 shows

that the curve is conservative enough for a first approximation of the safe

zone. Lack of direct data regarding V/A ratios of animal experiments makes

the degree of conservatism difficult to assess. In those humans where lung

damage was sustained, there is inadequate information about the degree of

breathholding and the fraction of vital capacity during exposure. These

factors preclude adequate evaluation of the zone above the curve in Figure 12-

17, especially in the pertinent zone of high Pc/Pa ratios of vacuum exposure.

Another factor controlling the extrapolation of animal data to humans is the

relative inertia of the chest wall during phase 2 of the decompression. The

time required to move the chest wall should roughi¥ scale directly as the one-

third power of the mass of the animal (21). This will determine t_e rate of

application of the tensile forces on the critical lung structures. Ibis factor

has not been considered in the above discussion.

In decompression of a space cabin, the composition of atmosphere is a

factor in lung damage. For the present, the use of gas other than 100% oxygen

is most unlikely in extravehicular suit assemblies. However, there is a

possibility that improvement in joint design may permit development of hard

suits operating under relatively high pressures with inert gas mixtures. The

flow of gas through the respiratory tract is a critical factor during "explosive"

decompression (103). A rigid analysis of the flow factor has been made using

a mathematical model of the fluid-mechanical response of the thoracoabdomina]

system to blast overpressure and "explosive" decompression (22). An

analysis of the gas-dependent factors in this model leads to the conclusion,

that the rate of pressure change in the lung with respect to ambient _dP_
-dT/t --0X

is a function of the product of the reciprocal of the square root of the average

molecular weight of the gas M and a gas-flow factor involving the specific

heat ratio y. This relationship is shown in the following equation

The lower the rate of pressure change in the lung with respect to ambient,

the more dangerous is the atmosphere, This same relationship would define

the hazard from external blast overpressure. For isothermal processes, the

value of y = 1 can be used. For adiabatic processes the values of y are

obtained from the Cp/C v ratios (i03). The ratios for the inert gases lie in
the i. 67 range, except for nitrogen at 1.4. The value for oxygen is 1.4.

It is still not absolutely clear whether adiabatic or isothermal processes

predominate in the lung in "explosive" decompressioll or blast overpressure.
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The rapidity of the process suggests adiabatic conditions. It must be
remembered, however, that the alveoli of the lung present a large surface
for heat exchange and high humidity. This would allow for rapid condensation
of water vapor to counteract the adiabatic cooling. The temperature change
in the lung during "explosive" decompression has been found to be minimal
( 58 ). Sensor lag obviously complicates the measurement to an unknown
degree A value of y = i. 2 for air has been used as a polytropic compromise
in an unknown situation ( ZZ ) but it is felt that the isothermal process probably
predominates (45). In the analysis of the space-cabin situation, calculations
were made for the currently proposed environment of 50 percent inert gas
and 50 percent oxygen. Both the isothermal and 50 percent isothermal-50
percent adiabatic specific heat ratios are presented in Table 18. For the

isothermal condition, v = I. Table 12-18 represents the calculations of

Table 12-18

Relative "Explosive" Decompression and Blast Overpressure Hazards from Atmospheres
at 7 Psia with 50 Percent Inert Gas and 50 Percent Oxygen

(After Roth (103))

(;as mixture in cabin

{ :I:oi....
(t.34 o20 0.17 0.15 0.13

1.25 1.25 1.25 1.25 1,25

,3,; .2O .17

.53 .90 1. ]

.26 .15 .13

,50 .87 1.0

I/M,,a ..........................................................................

"/{50 percent adiabatic) ..................................................

Isoth .... al expansi,,n (y = 1)(d/_
. dt 1,. 'd ................................

Relative hazard index _N_-O.., = 1_........................................

/\dP

Polytropic _xpanshm (50 percent adiabatic)_dTt)r=o" .............

Relative hazard index (N=-Oa = I) ........................................

.IS .13

I 1.2 1.4

.11 .10
i

1.2 1.3

N=-02 ()_

0.18 0.18

1.20 1.20

.18 .18

i l.O l.O

.13 .13

1.0 1.0

/ 't

d[,__,'_ for these gas mixtures and the relative hazard index with nitrogen-

V/ t=0

oxygen = 1. The relative hazard index is calculated from the reciprocal of

the di+' _ l 1= 0 factor. The nitrogen-oxygen and he 00 percent oxygen (7 psi)
\ / _

atmospheres would have the same degree of hazard. It can be seen that the
major ffas factor is 1/M 1/2. The thermodynamic nature of the expansion has

little effect on the relative hazard of the inert gas. Helium-oxygen appears

to be about 0. 5 as hazardous as nitrogen-oxygen or 100 percent oxygen; neon-

oxygen appears to be about 0.9 as hazardous. The relative degree of hazard

then increases with increasing molecular weight for the other gases. It

should be pointed out that these are the maximum differences expected. Most

second-order factors would probably tend to decrease the relative molecular-

weight dependence. For example, the rate of gas escaping from the cabin is
also dependent upon molecular weight. However, when one reviews the cabin

V/A ratios required for lethality in animals, it is evident that the cabin
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pressure will have essentially reached ambient well before the flow of gas
out of the respiratory tree has ceased. Any overlap of these flows would
reduce the dependence upon molecular weign_, ll_erelore, a prediction can
be made that the smaller the hole, the less gas-dependent is the hazard. The
practical significance of gas-specific factors in lung damage is open to question.

Another variable to be considered in evaluation of the hazard of decom-
pression is the presence of oxygen mask or respiratory equipment which may
superimpose an artificial "glottis" over the normal one and increase the
effective V/A ratio of the subject (82). This should not be a consideration

in current full pressure suits where large plastic bubble helmets surround the
facial area.

The several mathematical models of the thorax-abdominal system for

evaluating the hazards of air blast overpressure and explosive decompression

damage to the lungs require more empirical study for confirmation of their

validity under the several variables of the current problem (ZZ, 73 ). When

fully validated, these models could be used to give a finer prediction of the

hazards under the specific internal pressure profiles presented by disrupting

cabins and space suit assemblies.

From the above discussion of critical V/A ratios, it can be calculated

that with glottis open, an astronaut in a 50 cu ft cabin of Project Mercury

would have to sustain an acute disruption of at least l sq foot of cabin wall to

receive damage to a normal lung. In the case of suit disruption, the problem

is more complex (99). Except for joint and helmet areas, the laminated

fabric of the soft suit and metal shell of the hard suit are reportedly safe

from acute disruption. Verbal reports from the engineers interviewed sug-

gest that the "fail-safe" nature of neck seal and probably the wrist, thigh, and

ankle seals, relegate the chances of acute disruption to a very low category.

The waist seal of the hard suit is the most vulnerable site of disruption. The

laminated fabric lining the bellows systems reduces their vulnerability to

catastrophic disruption.

The time characteristic anticipated from disruption of soft and hard suit

seals is shown on Table 12-19. The residual suit volumes were calculated

from frontal areas of the suit sections. Orifices were of annular type cal-

culated by subtracting from the cross section area of the suit at the dis-

rupted seals, the cross section of the body segmerit enclosed. From Table 12-

19 and the data presented above, it can be concluded that acute catastrophic

disruption of the neck and wrist seals of the soft and hard suits and disruption

of the neck, thigh, and ankle seals of the hard suit may well lead to lung

damage in a previously normal, suited subject in a vacuum chamber or in

space. This is true even for open-glottis conditions. The hazard is intensi-

fied if the glottis is closed and breath is held. Disruption of a glove finger

in both suits and the portable life support (PLSS) umbilical in the hard suit

would probably not lead to lung damage if the glottis were open, but may lead

to difficulty if the breath were held during the decompression. Disruption of
the chamber umbilical in the hard and soft suits and PLSS umbilical in the

soft suit, particularly at the entrance ports to the suit, could possibly lead to

lung damage under open-glottis conditions. However, the case is less clear
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Table 12-19

Time Characteristics of Explosive Decompression Predicted for Acute Disruption
of Space Suits During EVA and in Test Chambers (See text)

Soft Suits

Neck Seal (PLSS) 26, 000

Wrist Seal (PLSS) 28, 000

Chamber umbilical

hose 25, 500

PLSS umbilical

hose 28, 000

Fingers (PLSS) 28, 000

(After Roth (99))

Residual Suit Orifice V/A _ P3 t
(-

Volume Area Ratio (s e_c)
cr

(co) (cm 2) (meters) (Fig. 12-13) (sec)

295 0.88 0. 0025 1.45 0.0036

60 4.67 0.0134 1.45 0.019

7. 9 32. 3 O. 093 1.45 O. 14

2. 8 100. 0. 286 1.45 0. 41

1. 2 233. 0, 670 1.45 0. 97

Hard Suits

Waist Seal (PLSS)

Neck Seal (PLSS)

Thigh (PLSS)

Ankle (PLSS)

Wrist Seal (PLSS)

Chamber umbilical

hose

PLSS umbilical

hose

Fingers PLSS)

35,200 810 0.435 O.

70,600 561 1.25 O.

64,000 177 3.6 O.

75,000 168 4.46 O.

75,000 54 13.9 0.

71,000 7.9 89.8 0.

75.000 2.8 268. 0.

75,000 1.2 620. i.

00125 1.45 0.0018

00359 1.45 0. 0052

0104 1.45 0.015

0128 1.45 0.019

0399 1.45 0. 058

255 1.45 0. 370

77 I. 45 I. 1

78 1.45 2.6

than the previous one. Disruption of the umbilical hoses at a distance from

the entrance port would lower the probability of damage ( 99, I14). It is clear

from this analysis that all seal areas should be designed for slow propagation

of disruptive processes. The advisability of preparing therapeutic devices

and facilities for handling explosive decompression emergencies would,

strictly speaking, depend on the actual reliability of the suit seals under

question, and the assumed degree of conservatisn-_ used in extrapolating from

animal data obtained at pressure regimes different from the case in question.

However, these uncertainties suggest that accidents should be anticipated and

plans made accordingly.

During the second phase of maximal expansion of the lungs and chest

wall, disruption of the tissues would occur as their tensile strength is exceeded.

This would also occur during decompression with closed airways. These

structural defects lead to pulmonary hemorrhage and edema as well as to

pneumoperitoneum and pneumothorax. During the third phase of maximal

expansion, penetration of bubbles into the blood stream takes place as a high

pressure gradient is formed between the alveoli and the pulmonary veins.

Gas emboli enter the blood stream and pass to the arterial circulation. Such

embolization may continue to occur upon inspiration for some time after the

dec ompr e ss ion.
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Death is usually caused by hemorrhage from the disrupted lung or by

introduction of gas emboli into the venous side of the pulmonary circulation

and subsequent infarction of critical sites in the systemic circulation. Expos-

sure to the vacuum for several minutes can lead to further lung damage and

to the ebullism syndrome (see below}. The pathological physiology and

optimum treatment of these syndromes has been recently reviewed ( 26, 99 ).

All human accidents and the single fatality are reviewed in detail.

One factor which must be considered in the selection of astronauts or

test subjects is prior pathology in the lungs. Plugs of mucus in the bronchioles
reduce the local V/A ratio and increase the distal transalveotar pressure

impulse during the decompression. Such plugs were found in the one reported
human death after explosive decompression (112). Those factors which

weaken the alveolar walls would increase the hazard ot exposure. The same

conditions predisposing to spontaneous pneumothorax would be expected to

increase the chances of parenchymal damage in decompression. The value

of routine and special x-ray examination of subjects and other selection pro-

cedures has been analyzed (99).

Treatment of pneumothorax, pneumomediastinum, lung contusion, and

aeroemboli resulting from explosive decompression has been recently covered

( 26, 99 ). The latest U.S. Navy tables for recompression therapy are

recommended ( 19, 116, IZ3, 124 ). The objective of the recompression

method is to expose bubbles to the optimum pressure gradient for efficient

and rapid resolution while still permitting maximum oxygenation of tissues

with circulation impaired with bubbles. Oxygen here has the effect of pre-

serving function in ischemic vital areas and also interrupting the insidious

cycle of ischemia, hypoxia, edema, obstruction, and further ischemia. An

important collateral benefit is the absence of further inert gas saturation

of the patient under recompression with pure oxygen. The volume of any

spherical bubble decreases inversely with applied pressure. For chamber
therapy, the treatment tables stop recompression at 165 feet gauge pres-

sure because relative decrements of voIume with increasing pressure

become insignificant past 1/6 of the original bubble volume, while increasing

the depth past 6 atmospheres (absolute) enormously increases the difficulties

of subsequent decompression back to normal pressure, especially for an

injured patient. The geometry of the situation dictates that the radius of the
bubble decrease as the cube root of the applied pressure. The diminution of

the radius, therefore, begins to become inefficient at shallower depths than
165 feet.

Bubble resolution in decompression sickness depends both on a reduction

in size with recompression and on the elimination of inert gas from the

bubble and from the surrounding tissue. In severely injured patients treated

with recompression to 165 feet, inert gas exchange is grossly impaired in

areas distal to obstruction. Bubbles may form during subsequent decompres-

sion in areas of tissue injury which have inadequate inert gas elimination

rates due to circulatory impairment. The avoidance of further inert gas uptake

by compressing only to 60 feet and the acceleration of inert gas eiimination by

oxygen breathing may overbalance any small decrease in bubble radius from

further compression to 6 atmospheres. In patients for whom treatment has
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been delayed and in whom vascular obstruction from edema and thrombosis
may be of an importance equal to or greater than that from persistent bubbles,
the hyperbaric oxygenation given immediately in treatment is believed to be
of substantially more benefit than increased bubble compression with com-
pressed air breathing.

The rate of recompression is another factor to be considered. The
chambers at the NASA, MSC, Houston, can reach 7 psia within 25 seconds
from onset of decompression ( Z6 }. This time is certainly adequate for
handling the emergencies outlined above. Ideally, the repressurization gas
should be oxygen. However, the engineering problems and hazards involved
in rapid recompression of a huge chamber with oxygen make this approach
unfeasible (91, I01 I. Very rapid recompression can also be hazardous. Com-
pression of animals over 0. 5 atmospheres pressure difference in periods less
than several milliseconds can lead to the same type of lung injury as seen
in explosive decompression (71, 74 }. Restricting any emergency repres-
surization from vacuum through 7 psia to periods longer than 5 seconds should
avoid permanent damage to the eardrums in most individuals ( 4, 56, if0,
Ill }. In case of explosive decompression of space suits during EVA, the
space cabin and suits should be raised to their highest design pressures (26}. In
most cases, this total will not exceed about 10 psia.

Treatment of the accompanying ebullism is covered below.

IEbulli sm

Exposure to altitude where the total ambient pressure approaches 47 mm
I-Ig, the effective vapor pressure of fluids at body temperature, gives rise to
the profuse evaporation associated with formation of vapor bubbles in tissues,
blood vessels, and body cavities {I02, If8, 122).Selection of vapor site is
determined by such local factors as temperature, hydrostatic pressure,
tissue elasticity, solute concentration {Clausius-Clapeyron factors) and
presence of gas nuclei. As would be expected from these considerations, the
large venous channels at the center of the body temperature core are sites
of early bubble formation resulting in vapor lock of the heart. Subsequently,
vapor pockets forming in the loose subcutaneous _issue are often seen, as are
vapor bubbles in the aqueous humor of the eye and in the brain. In looking
at the ebullism syndrome, one must also keep in mind damage to the body
from hypoxia and lung pathology from explosive decompression ( 99 }.

There have been no exposures of the total u_protected human body to
pressures in the ebullism range of significant duration. Exposure of only the
hand to pressures of 5 to 30 mm Hg results in marked swelling with latencies
which range from 0. 5 to 10 minutes (IZZ}. The reason for such a range is not
clear and may be peculiar to the experimental condition. The wrist and
fingers can be flexed and extended through about 50 % of the normal range of

motion. There is no pain associated with the swelling but only paresthesias

in the area. Sudden recompression results in the swelling resolving at a

pressure of 87 to 141 mm Hg in less than 0. B minutes. Disruption of gloves

in pressurized suits would probably lead to this condition.
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The survival time of man exposed to near-vacuum conditions without
pressure suit protection must be extrapolated from recent animal data.
Early studies of explosive decompression of animals to very low pressures
focused on the pathology to the lungs (7, 47, 58, 59). Even in the absence of
pneurnothorax, atelectasis appeared more severe than after explosive decom-
pression to lower altitudes, probably because of vapothorax. Another key
factor is suggested by the finding that only those animals in which respiration
had ceased before recompression showed complete atelectasis. It is con-
ceivable that water vapor entering the alveoli displaces the gas content and
then recondenses on recompression to cause severe alveolar collapse. Other-
wise the lesions were not much different from those of explosive decompres-
sion to lower altitudes.

More recent studies of ebullism cover the survival and functional capa-
bilities of animals exposed to altitudes above i00, 000 ft (8 mm Hg) (5, 7,
32,43, 63, 69, 70). Decompression up to 130, 000 ft (2 mm Hg) result in
violent evolution of water vapor with swelling of the whole body of dogs. Pre-
liminary results indicate that dogs kept as long as 90 seconds at 2 mm Hg did
not present a single fatality. The animals were unconscious, gasping, and
had bradycardias down to 10 beats per minute from the normal rate of 159

beats per minute, possibly a vagal response due to distortion of the mediastinal

structures resulting from sudden expansion of the thorax. Most also had

paralysis of hind limbs, yet after i0 to 15 minutes at sea level, they walked

about normally. Animals exposed beyond 120 seconds did die frequently.

Autopsy of surviving animals exposed less than 120 seconds demonstrate

damage to the lung in the form of congestion, petechial hemorrhage, and

emphysematous changes, the damage increasing with duration of exposure.

Petechial hemorrhages and emphysema were more severe when decompres-

sion to altitude occurred within 0. 2 seconds than when a decompression time

of I second was used (43 ). Denitrogenation appears to reduce the incidence

and severity of lung damage, possibly by reducing the inert gas entering the

vapor bubble in the right heart (I02). For the exposures of more than 120

seconds, gross examinations of the brain and other organs showed increasing

amounts of congestion and hemorrhage with time at altitude. Occasionally

dogs will die of cardiac arrythmias possibly triggered by aeroemboli to the

coronary arteries (see below).

Exposure of squirrel monkeys resulted in similar findings (I04). Many

of the survivors of 90 seconds exposure showed various defects in locomotion,

hearing, vision, and food retrieval, and lost more weight than the control

groups. Of interest, however, is the fact that among the survivors there was

no loss of proficiency in learning set (69, 70 ). Chimpanzees can survive

without apparent central nervous sytem damage (as measured by complex

task performance) the effects of decompression to a near vacuum for up to

2. 5 minutes and return within approximately 4 hours to baseline levels of

functioning. One chimpanzee with intra-cerebral electrodes was at 2 mm Hg

for 3 minutes. His time of useful consciousness was ii seconds. Cortical

silence started at 45 seconds; and subcortical, at 75 seconds. Two months

later he still showed mild organic residua with performance and behavioral

changes. It is of interest that in one case of death in these chimpanzees, no

indication of disruption of the alveoli, alveolar ducts or bronchi was noted

12-31



on postmortem. Death was attributed to failure in the conducting mechanism
of the heart.

For planning emergency procedures following decompression of pro-
tected humans to vacuum or near-vacuum conditions, a maximum survival
time of 90 seconds should be used. Times of useful consciousness of about
I0 seconds can be anticipated.

From the animal studies it can be inferred that upon prolonged exposure,
cardiovascular collapse will be most precipitous and a major cause of death.
After exposure to sub-ebullism altitudes, there is a dramatic fall in blood
pressure followed by rebound with subsequent anoxic failure. Almost im-
mediately after decompression to an ambient atmospheric pressure at which
ebullism can occur, vapor bubbles form at the entrance of the great veins
into the heart, then rapidly progress in a retrograde fashion through the
venous system to the capillary level. Venous return is blocked by this
"vascular vapor lock." This leads to a precipitous fall in cardiac output,
a simultaneous reduction of the systemic arterial pressure, and the develop-
ment of vapor bubbles in the arterial system and in the heart itself, including
the coronary arteries. Systemic arterial and venous pressures then approach
equilibrium in dogs at 70 mm Hg (96). At ebullism altitudes, one can expect
vapor lock of the heart to result in complete cardiac standstill after 10-15
seconds, with increasing lethality for exposures lasting over 90 seconds.
Vapor pockets have been seen in the heart of animals as soon as l second
after decompression to 13mm Hg (63). Upon reco_npression, the water vapor
returns immediately to liquid form but the gas components remain in the
bubble form. When circulation is resumed, these bubbles are ejected as
emboli to the lungs and periphery. Cardiac arrythmias often occur as do
focal lesions in the nervous system (7, 27, 32, 33, 43, 69 ). These are
probably a result of infarct by inert gas bubbles. The problem is aggravated
by the concomitant generalized hypoxia. Cooling of the blood to 9oc by rapid
evaporation in the alveoli while circulation is still intact, may delay the
cardiac and cerebral response to ischemic hypoxia (4, 69, 96 ). The short
cooling time precludes a more effective temperature drop.

Alteration of the gaseous environment may affect the ebullism syndrome.
Data are available on the nature of the gas bubbles in the vascular system.
Analyses of the changing gas compositions of subcutaneous vapor pockets
by different investigators have given equivocal results (102). At first
there appears to be a rapid conversion of liquid water to the vapor phase
which reaches a peak at one minute and continues at a slower rate for several
minutes. There is an initial rush of carbon dioxide, nitrogen, and oxygen into
the pocket, but carbon dioxide and the nitrogen soon become predominant. If
one can extrapolate to the more lethal vaporous bubbles in the great veins and
right side of the heart, it would appear that the rate of growth and subsequent
stability of bubbles after recompression would probably depend on the per-
meation coefficient or product of solubility and diffusivity (gbloodDblood) of
the inert gas passing from the blood to the vapor bubble (i02). Neon would
enter the bubble more slowly than nitrogen, helium, or argon (order of
increasing gas permeation . Once emboli have been ejected by the heart and
have landed in the arterial system, however, the rate of resolution of the
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bubble during therapeutic maneuvers will be inversely proportional to the
(gbloodDblood) factor. Gas emboli containing only oxygen are safest,
followed, in increasing order of hazard, by those of argon, helium, nitrogen,
and neon. This would also hold for gas emboli entering the circulation from

the injured lung.

It should be remembered, however, that presence of 100% oxygen in the

space suit does not eliminate the problem of aeroemboli. Comparative effects

of 0 2, CO 2, N Z, and He emboli have been studied (38). Different volumes

of these gases were injected into the internal carotid arteries of dogs pre-

pared surgically so that the gas went only into the cerebral circulation without

shunting to the extracranial arteries. Oxygen was tolerated without mortality

but all the dogs had clinical or anatomic evidence of cerebral infarction.

Carbon dioxide was well tolerated in doses up to I. 5 ml., but morbidity and

mortality occurred with 2 ml. Nitrogen and helium foam produced effects

similar to those of air foam, and morbidity and mortality results were com-

parable to the results obtained with air embolization. The physical basis for

this difference is determined by the comparative resolution rates, and ulti-

mately, by the permeation coefficients of different gas bubbles (72, i02).

Occlusion of the circulation probably prevents the unsaturation of hemoglobin

and reduces the size of the potential oxygen sink in the immediate surround

of the intraarterial bubble. One must therefore anticipate that oxygen emboli

will be somewhat less dangerous but cannot be neglected. For equal amounts

of helium and nitrogen in the cerebral circulation, the hazard is probably

equal. Empirical data are needed on gas effects on aero embism and ebullism.

Treatment of ebullism and related syndromes has received little formal

attention. From the review of the pathological physiology of ebullism, it is

apparent that in the treatment of this syndrome in space operations or in

chambers one must consider damage to the lungs from exposure to cold (96 ),

from hypo_da, and from gas embolization arising in the large veins and right

side of the heart. One must also consider arterial gas embolization through

atrial septal defects or vascular shunts in the lung. Fortunately, therapy of

contusive damage to the lung covers damage to the lung from ebullism ( 99 ).

In chambers on Earth, the Trendelenberg position may decrease the emboliza-

tion of the lungs ( 99 ). Aspiration of gas from the right ventricle in the case

of cardiac arrest may aid in restoration of the circulation and avoid further

damage to the lung by gas emboli. Treatment of arterial or venous gas emboli

after ebullism should be no different than that following lung disruption. Com-

pression therapy suggested for the latter should have no deleterious effects

on the former. As in contusive damage, progressive pulmonary edema and

atelectasis must be anticipated after prolonged exposure of the lung to vacuum.

In view of the atelectatic tendency, prolonged treatment with I00°_0 oxygen

should be used only when cyanosis and oxygen unsaturation of the blood are

present in cases uncomplicated by obvious embolization (100).

Exposure to hypoxic environments for longer than 3 or 4 minutes may pro-

duce several of the post-hypoxic syndromes during the treatment period.

These have recently been reviewed in great detail (26). It may be difficult

to distinguish post-hypoxic cerebral edema from brain syndromes associated

with massive air embolization. Failure of a patient to respond to recom-
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pression therapy (persistent coma or delerium) should raise the considera-
tion of post-hypoxic-cerebral edema. Dehydration therapy would then be in
order. It is suggested that mannitol be given intravenously in concentrations
up to 20°_0with doses up to Z00 Gm per 24 hr period (26, 75 ). Hypothermia
may also be used for the post-hypoxic syndrome to minimize damage to the
brain elements and break up the vicious edema-hypoxia cycle (26). It has
been recommended that body temperatures between 30oc (86°F) and 32°C
(89. 6°F) be attained with suppression of shivering by chlorpromazine (52. l 25).
The value of steroid-antihistamine combinations for post-hypoxic cerebral
edema is yet to be determined (104).

The bizarre electrocardiographic patterns seen in dogs exposed to vacuun_l
range from extrasystoles to idioventricular rhythms and ventricular fibrilla-
tion ( 25, 31, 96 ). Cardiac dilatation (from trapped gas), hypoxia, vaporiza-
tion of intracellular water, exposure to cold blood, and air emboli may all
probably play a role. Electrical defibrillation and not just anti-fibrillatory
drugs should be used to reverse the ventricular fibrillation and tachycardia
(49). Lidocaine is effective if P.V.C. 's or ventricular tachycardia occur
after electrical defibrillation. The dose of lidocaine is i-2 mg/kilogram body
weight given intravenously in 1-2 minutes, repeated if necessary once or
twice at 20 minute intervals. For idioventricular rhythm with rates greater
than 150 per minute ,as ventricular tachycardia, the treatment should be
lidocaine. Idioventricular rhythm with a rate of less than 100 per minute
implies that ventricular escape has occurred and treatment with lidocaine is
contraindicated. On Earth, a transvenous pacer_aker should be used. This
maneuver, by increasing the ventricular rate, will usually suppress the
ectopic focus, but if the attempt is not successful, cardioplegic drugs may
then be used with a greater measure of assurance. Idioventricular rhythms
with rates between I00 and 150 per minute present a difficult problem One
can try treatment with lidocaine but if dysfunction of the conduction system
appears to be present, an artificial pacemaker should be used (93).

Blast Overpressur e

The hazard of blast overpressures from meteoroid penetration or explo-

sions within a spacecraft results from direct blast damage to the ears and

lungs and secondary damage to the body from non-penetrating missiles, pene-

trating missiles, and sudden impact against large structures (101, 121).The

time-geometry of the effective blast wave is critical in determining levels

of injury expected from any overpressure. Such factors as the incident wave

form (rise time, peak pressure, duration , and pulse tail-off), dynamic

pressures, reflected waves and their timing, ambient pressures, positioning

of subject relative to blast direction, geometry of surroundings, etc., all are

critical (97, 121 ). The term" effective pressure" will be used to cover the

overpressure equivalence of all these conditions. For space operations, the

ambient pressure is most important in biological scaling (22, 35, 36 ). For

lethality, lung damage, and possibly eardrum damage, the overpressure in

psia for 50% effect (P50) at any ambient pressure, (X) relative to sea level

(SL) is:
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P50 (x) = PSO(SL) 14. 7 (17)

The scaling equation in Figure 12-21d includes this pressure factor.

Lethality

Blast overpressures produce their lethal effect by primarily disrupting

the alveolar and vascular structures of lungs causing hemorrhage and res-

piratory embarrassment (101, IZ0). Gas emboli entering the circulation from

disrupted pulmonary veins can pass to coronary or cerebral circulation and

cause death by infarction of the tissues. The maximum tolerable overpres-

sure is a function of the pulse duration and geometry of exposure, including

such factors as body position relative to the blast wave and to reflecting
structures.

The threshold, 50% and 100% lethality levels for short and long dura-

tion blast are seen in Table 1Z-Z0. For atypical or disturbed wave forms

of "long duration, " tolerance can be estimated to increase by about a factor

of two for pressures rising to a maximum in two "fast" steps and by a factor

of 3 to 5 for wave forms rising smoothly to a maximum in 30 or more msec.

Figure 12-21a to c are preliminary estimates of human survival after

air blast exposures of different duration and geometry of incidence. Figure

12-Zld presents scaling criteria and animal data from which human thresholds

were derived. These figures show some of the geometric factors which must

be considered in evaluating the blast hazards resulting from explosions of

boosters on launch pads or of space cabins in orbit.

Lung

From animal studies it appears that death, if it does occur, will over-

take more than 900/o of the animals within the first 30 minutes after exposure

(IZ0). This can probably be applied to man as well. Threshold overpressures

for lung damage and probably secondary emboli are seen in Table IZ-Z0.

Figures IZ-Zla to c give the threshold overpressures for lung damage under

different geometries of incidence and duration of exposure.

Damage to the lungs by overpres.sures resulting from meteoroid penetra-
tion of spacecraft has been reviewed (102). Overpressures oI less tlaan I msec

with rise times as short as 15 microseconds may be anticipated. Effects of

these overpressures are complicated by the flash-oxidation of molten metal

resulting from penetration of the cabin wall by the meteoroids. Inhalation of

hot metallic vapors may increase lung damage brought about by the blast over-

pressure. More quantitative work on this problem is needed.

Damage to the lung from excessively rapid recompression from a vacuum

is covered on page 12-30.
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Ear

Damage to the eardrum is also a significant factor in blast injury (i13,

iZ0, 121). The maximum overpressure is a major blast parameter to be

considered, but the rise time and duration of pulse are also significant. The

slower the rise time, the greater the peak overpressure needed to disrupt the

drum. The longer the duration of overpressure, the greater the percent of

disruption at the same peak overpressure (i 20). Tentative estimates for

short-and long-duration effects in man are shown in Table 12-20. The exact

scaling of ambient pressure and wave-form effects for man are less certain

for eardrum rupture than for lethality.

Figure IZ-ZZ represents an estimate of population response to peak

overpressure with drum disruption as an endpoint.

Figure 12-20

Tentative Criteria for Primary-Blast Effects in Man Applicable to "Fast"-Rising Air Blasts
of "Short"-Duration (3 msec) and "Long"-Duration (Plateau >20 msec)*

Critical Organ
or Event

Maximal Effective Pressure
(psia at sea level)*

Eardrum Rupture

Threshold

50 Per Cent

Lung Damage

Short Lon_q

Threshold

Severe

Lethality

Threshold

50 Per Cent

Near 100 Per Cent

6 6

18 18-25

37-49 12-14

100 and above

120-140 37-52

160-220 51-70

250-310 70-98

Effective pressure can be the incident, reflected, or incident plus dynamic, depending
on one's geometry of exposure and the location of the explosion. The data on lung
damage and lethality correspond to those of Figure 12-21; the data on eardrum rup-

ture (short duration), to Figure 12-22.

(After Richmond et al (97) and White (121))
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Figure 12-21

Estimate of Survival and Lung Damage Thresholds for Humans Exposed to Air Blast

(After Bowen et al (21))
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Figure

C.
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12-21 (continued)
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Figure 12-22

Tolerance of Eardrums to Fast-Rising Overpressures
Estimated from Combined Human Data (&)

(After Hirsch (57))

The most significant effect of blast injury to the ear is damage to the

organ of Corti and resulting loss of hearing, both temporary and permanent.

It is felt that when the eardrum is disrupted, injury to the inner ear is less

and the deafness less grave and less permanent than when the same over-

pressure does not disrupt the drum (57). In the presence of drum rupture,

the hearing loss is of mixed type with both low-frequency loss of middle ear

damage and high-frequency loss of inner ear damage. (See Sound and Noise,

No. 9). U'sually the low-tone loss willbe in the order of I0-30 dB and the high-

tone loss of 40-80 dB. When dislocation of the ossicles accompany drum

rupture, usually in "long-duration ''blast, a permanent, severe, conductive

loss is sustained. The size of the perforation does not o_rrelate with hearing

loss. Up to 78% of cases of temporary deafness can occur without perfora-

tion (18). There is an accumulative effect of multiple blast insults to the

ear with progressive conversion to permanent hearing loss.

Because of the great variation with age and secondary factors, there is

little correlation of dB loss at any frequency with the blast overpressure sus-

tained at the ear level. Figure 12-23 represents a typical audiogram follow-

ing a fast ris_-short duration overpressure of 30 dB which disrupted both ear-

drums. After healing of the perforation the audiogram returns to normal

except for residual high frequency loss. As is indicated, conversational tone

reception may not be compromised. The effect of impulse noise is under

study ( 60, 61 ).

Recompression damage to the ear is covered on page IZ-30.
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Figure 12-23

Typical Audiogram Following Short Rise Time-
Short Duration Overpressure ot 30 Psia
with Drum Rupture

(After Htrsch (57))

Heart

Lowering of the blood pressure sometimes to the point of shock, slowing

of the pulse and an increase in the respiratory rate have been frequently

observed in experimental animals exposed to explosions. The shock-like

state occurs too rapidly to be associated with loss of blood in the lung tissue,

so explanations have been sought through reflex mechanisms. It thus appears

that the tissue injury of the lung may induce reflexly through the vagus nerve

a shock-like state with a slow heartbeat. The situation is later complicated

by loss of blood into the lungs and reduced oxygen supply secondary to the

reduced capacity of the lung for air. Heart failure secondary to failure of the

circulation of blood to the heart muscle brought about by an emboli has also

been noted and sometimes appears to be related to sudden death in experi-
mental animals.

Abdominal Viscera

Hemorrhage into air-containing abdominal viscera, particularly the gastro-

intestinal tract, has been reported following both air and water blast. As for

the lungs, the basic mechanism for injury would appear to be relative dis-

placements among tissues at boundaries where the medium changes abruptly

from fluid to gaseous. In air, injury to the lungs occurs mo_e easily than

injury to the abdominal viscera. Because of better shock-wave coupling,

underwater explosions of mines near sailors swimming in water have been

noted to produce more severe injuries to the air-filled abdominal viscera

than to the lungs.

Brain

The mechanism of injury to the brain from shock waves in air remains

somewhat obscure. Both large and small hemorrhages in the substance of

the brain and in the tissues surrounding the brain have been observed in both

man and experimental animals. Such injuries usually occur after exposure

to extreme and nearly mutilating blast conditions. There is experimental
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evidence that under less severe conditions some of these hemorrhages are
secondary to interference with the circulation to the brain by bubbles of air
in much the same way as described above for the heart (120).

Skeleton

Injuries to the bony skeleton from shock waves reaching man through air or
water have not been reported. On the other hand, shock waves reaching man
through solid supporting structures have produced severe fractures and dis-
locations of the skeleton. Transients applied to the base of the spine of a
seated man can produce fractures and dislocations of the spine with para-
plegia as a consequence. Although injuries to the lower extremities while
standing and to the spine while seated are most common, other postures with
varying degrees of contact with solid structures can produce other more
bizarre injuries (120}. (See Impact in Acceleration, No. 7.)
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